Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Experimen...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Role of Glutamate Transporters in Glutamate Homeostasis in the Brain

Authors: Brian Billups; David Attwell; David J. Rossi; Monique Sarantis; Martine Hamann; Michiko Takahashi;

The Role of Glutamate Transporters in Glutamate Homeostasis in the Brain

Abstract

ABSTRACT Glutamate transporters in neurones and glia, four of which have been cloned from mammals, play a crucial role in controlling the extracellular glutamate concentration in the brain. In normal conditions, they remove glutamate from the extracellular space and thereby help to terminate glutamatergic synaptic transmission and to prevent the extracellular glutamate concentration from rising to neurotoxic values. Glutamate transport on these carriers is thought to be driven by the cotransport of Na+, the counter-transport of K+, and either the cotransport of H+ or the counter-transport of OH−. Activating the transporters also activates an anion conductance in their structure, the anion flux through which is not coupled to glutamate movement and varies widely for the different transporters. During hypoxia or ischaemia, glutamate transporters can run backwards, releasing glutamate into the extracellular space, triggering the death of neurones and thus causing mental and physical handicap. The rate of glutamate release by this process is slowed by the acid pH occurring in hypoxia/ischaemia, which may help protect the brain during transient, but not sustained, ischaemia.

Related Organizations
Keywords

Epilepsy, Amino Acid Transport System X-AG, Sodium, Brain, Glutamic Acid, Nerve Tissue Proteins, Hydrogen-Ion Concentration, Synaptic Transmission, Brain Ischemia, Adenosine Triphosphate, Chloride Channels, Potassium, Animals, Humans, ATP-Binding Cassette Transporters, Cloning, Molecular, Hypoxia, Brain, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    181
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
181
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?