Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Experimental Biology
Article . 2003 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2003
Data sources: Datacite
ZENODO
Article . 2003
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effects of gape angle and bite point on bite force in bats

Authors: Dumont, Elizabeth R.; Herrel, Anthony;

The effects of gape angle and bite point on bite force in bats

Abstract

SUMMARY Models of mammalian mastication predict that bite force is affected by both the degree of mouth opening (gape angle) and the point along the tooth row at which force is transferred to a food item (bite point). Despite the widespread use of these models in comparative analyses, experimental data documenting bite force in non-human mammals are extremely limited. The goal of this study is to document variation in non-stimulated bite force associated with change in gape angle and bite point in a broad range of species. We focus on plant-visiting bats because they exhibit a relatively primitive cranial morphology and are good models for generalized mammals. Assessments of the relationship between gape angle and bite force within and among species demonstrate that bite force decreases significantly as gape angle increases. The relationship between bite force and bite point within each of seven species demonstrates that unilateral molar biting universally generates the highest forces while the unilateral canine biting produces the lowest forces. Bilateral canine biting is intermediate. Beyond these general patterns,differences among species suggest that bite force reflects variation in craniofacial architecture. Finally, these data suggest that behavioral variation in gape angle and bite point may be important variables in comparative, functional analyses of feeding.

Keywords

Mouth, behavior, 590, bats, bat, 612, Feeding Behavior, Biodiversity, Molar, Biomechanical Phenomena, Bite Force, Chiroptera, Mammalia, Animals, bite force, Animalia, gape, Chordata, Biology, performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    167
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
167
Top 1%
Top 10%
Top 10%
bronze