
doi: 10.1242/jcs.29.1.103
pmid: 627600
ABSTRACT Structures retaining many of the morphological features of nuclei may be released by gently lysing human cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids contain superhelical DNA. Using a double-labelling procedure we have compared, at different salt concentrations, the amounts and types of protein associated with human nucleoids containing superhelical or relaxed DNA. We find that the slightly lysine-rich histones (H2A and H2B) but not the arginine-rich histones (H3 and H4) dissociate more slowly from nucleoids containing superhelical DNA than from those containing relaxed DNA. A protein of apparent molecular weight of 22000 also binds more tightly to superhelical DNA. We conclude that this protein and the slightly lysine-rich histones transmute free energy of supercoiling into binding energy when they bind to superhelical DNA.
Histones, Molecular Weight, Kinetics, Nucleoproteins, DNA, Superhelical, Lysine, Nucleic Acid Conformation, Arginine, Protein Binding
Histones, Molecular Weight, Kinetics, Nucleoproteins, DNA, Superhelical, Lysine, Nucleic Acid Conformation, Arginine, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
