Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Replication of the genome of alphaviruses

Authors: L, Kääriäinen; K, Takkinen; S, Keränen; H, Söderlund;

Replication of the genome of alphaviruses

Abstract

ABSTRACT The genome of Semliki Forest virus (SFV) is 11 442 nucleotides with a 5′ cap-structure and a 3′ poly(A) tail of about 100 residues. The genome of the closely related Sindbis virus (SIN) is slightly longer (11 703 nucleotides). The parental RNA is first translated from the 5′ two thirds to yield; nsPl, nsP2, nsP3 and nsP4, which are cleaved from a polyprotein of 2431 amino acids (SFV). The parental genome is copied to a full-length minus strand with poly(U) at the 5′ end. The minus strand is used as template for the synthesis of 42 S RNA in membrane-bound replicative intermediate (RI) structures. In addition to 42 S RNA, a 3′-coterminal subgenomic 26 S mRNA, coding for the structural proteins, is synthesized by internal initiation at the minus strand. Capping and methylation of both plus-strand RNAs occur concomitantly with their synthesis. Analysis of Sindbis virus temperature-sensitive RNA-negative mutants have shown that one complementation group (B) is specifically associated with the synthesis of minus strands. Another, group F, is involved in the polymerization step of both minus- and plus-strand 42 S RNA, and of the 26 S mRNA. The synthesis of minus strands is normally dependent on protein synthesis. There is a shut off of the minus-strand RNA synthesis at about 3h post-infection. This is apparently regulated by a virus-specific protein, represented by the complementation group A. The same protein is involved in the regulation of the initiation of 26 S RNA together with a component represented by group G mutants. Comparative analysis of SFV and SIN RNAs and DI RNAs of both viruses suggests that perhaps only 19 nucleotides from the 3′ end and about 150 nucleotides from the 5’ end are needed for replication of the alphavirus RNAs. In some SIN DI RNAs the proposed secondary structure at the 5’ end is replaced by a cellular tRNAASP suggesting that the secondary structure rather than nucleotide sequence is sufficient for the recognition by the viral polymerase. Even when the primary structure of the four non-structural proteins of both SFV and SIN is known, the correlation of the genetic data with the individual proteins has not yet been possible.

Related Organizations
Keywords

Base Sequence, Genes, Viral, Molecular Sequence Data, Alphavirus, Virus Replication, Models, Biological, Semliki forest virus, Viral Proteins, Protein Biosynthesis, Sequence Homology, Nucleic Acid, RNA, Viral, Amino Acid Sequence, Sindbis Virus

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Average
Top 10%
Top 10%
bronze