Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cell Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

Membrane recruitment of Rac1 triggers phagocytosis

Authors: F, Castellano; P, Montcourrier; P, Chavrier;

Membrane recruitment of Rac1 triggers phagocytosis

Abstract

ABSTRACT Rac1 is a Rho-family GTP-binding protein that controls lamellipodia formation and membrane ruffling in fibroblasts. Recently, Rac1 and Cdc42, another member of the Rho-family, have been shown to regulate Fc receptor-mediated phagocytosis in macrophages by controlling different steps of membrane and actin dynamics leading to particle engulfment. Here, we investigated the function of Rac1 using a membrane recruitment system that mimics phagocytosis. Recruitment of an activated Rac1 protein to the cytoplasmic domain of an engineered membrane receptor by using rapamycin as a bridge induces ingestion of latex beads bound to the receptor. Rac1-mediated bead uptake depends on actin polymerisation since actin filaments accumulate at the bead/membrane binding sites and internalisation is inhibited by cytochalasin D. Internalisation is also abolished upon substitution of Phe37 to Leu in the Rac1 effector region. Our results indicate that by promoting actin polymerisation at particle attachment sites, Rac1 by acting through specific downstream effectors induces plasma membrane remodeling that allows particle internalisation in a membrane-enclosed phagosome.

Keywords

Sirolimus, rac1 GTP-Binding Protein, Recombinant Fusion Proteins, TOR Serine-Threonine Kinases, Cell Membrane, Biological Transport, Receptors, Interleukin-2, Actins, Microspheres, Cell Line, Rats, Tacrolimus Binding Proteins, Microscopy, Electron, Phosphotransferases (Alcohol Group Acceptor), Phagocytosis, Animals, Point Mutation, Immunophilins, Carrier Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    135
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
135
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!