Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oxford University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The transcriptional basis of chromosome pairing

Authors: Cook, P;

The transcriptional basis of chromosome pairing

Abstract

ABSTRACT Pairing between homologous chromosomes is essential for successful meiosis; generally only paired homologs recombine and segregate correctly into haploid germ cells. Homologs also pair in some somatic cells (e.g. in diploid and polytene cells of Drosophila). How homologs find their partners is a mystery. First, I review some explanations of how they might do so; most involve base-pairing (i.e. DNA-DNA) interactions. Then I discuss the remarkable fact that chromosomes only pair when they are transcriptionally active. Finally, I present a general model for pairing based upon the DNA-protein interactions involved in transcription. Each chromosome in the haploid set has a unique array of transcription units strung along its length. Therefore, each chromatin fibre will be folded into a unique array of loops associated with clusters of polymerases and transcription factors; only homologs share similar arrays. As these loops and clusters, or transcription factories, move continually, they make and break contact with others. Correct pairing would be nucleated when a promoter in a loop tethered to one factory binds to a homologous polymerizing site in another factory, before transcription stabilizes the association. This increases the chances that adjacent promoters will bind to their homologs, so that chromosomes eventually become zipped together with their partners. Pairing is then the inevitable consequence of transcription of partially-condensed chromosomes.

Country
United Kingdom
Related Organizations
Keywords

Meiosis, Transcription, Genetic, Animals, Drosophila, Chromosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
Green