Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Interaction of Mint3 with Furin regulates the localization of Furin in the trans-Golgi network

Authors: Jinbo, Han; Yiguo, Wang; Suming, Wang; Chengwu, Chi;

Interaction of Mint3 with Furin regulates the localization of Furin in the trans-Golgi network

Abstract

Furin is a proprotein convertase that cycles between the plasma membrane, endosomes and the trans-Golgi network (TGN), maintaining a predominant distribution in the latter. Mint3, a member of the Mint protein family, is involved in the signaling and trafficking of membrane proteins. Until now, little has been known about the roles of Mint3 in the localization or trafficking of Furin. Here, using co-immunoprecipitation and immunofluorescence assays, we show that Mint3 interacts with Furin in the Golgi compartment of HeLa cells. Knockdown of endogenous Mint3 expression by RNA interference disrupts the TGN-specific localization of Furin and increases its distribution in endosomes. We further demonstrate that the phosphotyrosine-binding (PTB) domain of Mint3 is essential for the binding of Furin and that this binding affects the TGN-specific localization of Furin. Moreover, mutation studies of Furin indicate that Mint3 regulates Furin distribution mainly through interaction with the acidic peptide signal of Furin. Collectively, these data suggest that the interaction between the PTB domain of Mint3 and the acidic peptide signal of Furin regulates the specific localization of Furin in the TGN.

Related Organizations
Keywords

Furin, Models, Molecular, Binding Sites, Molecular Sequence Data, Protein Transport, Humans, Amino Acid Sequence, Carrier Proteins, Adaptor Proteins, Signal Transducing, HeLa Cells, Protein Binding, trans-Golgi Network

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
bronze