Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor

Authors: Matthias, Hartmann; Tanja, Brigadski; Kai S, Erdmann; Bettina, Holtmann; Michael, Sendtner; Frank, Narz; Volkmar, Lessmann;

Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor

Abstract

The Trk family of receptor tyrosine kinases and the p75 receptor (p75NTR) mediate the effects of neurotrophins on neuronal survival, differentiation and synaptic plasticity. The neurotrophin BDNF and its cognate receptor tyrosine kinase, TrkB.FL, are highly expressed in neurons of the central nervous system. At later stages in postnatal development the truncated TrkB splice variants (TrkB.T1, TrkB.T2) become abundant. However, the signalling and function of these truncated receptors remained largely elusive.We show that overexpression of TrkB.T1 in hippocampal neurons induces the formation of dendritic filopodia, which are known precursors of synaptic spines. The induction of filopodia by TrkB.T1 occurs independently of neurotrophin binding and of kinase activity of endogenous TrkB.FL. Coexpression of a p75NTR lacking an intracellular domain inhibits the TrkB.T1-induced effect in a dominant negative manner. Steric hindrance of extracellular p75NTR interactions with a specific antibody, or absence of p75NTR with an intact extracellular domain also inhibit this TrkB.T1-induced effect.We thus propose a novel signalling pathway initiated by neurotrophin-independent extracellular or intramembrane interaction of TrkB.T1 with the p75NTR receptor, which modulates dendritic growth via p75NTR signalling cascades.

Keywords

Neurons, Dose-Response Relationship, Drug, Green Fluorescent Proteins, Cell Differentiation, Dendrites, Hippocampus, Immunohistochemistry, Models, Biological, PC12 Cells, Receptor, Nerve Growth Factor, Protein Structure, Tertiary, Rats, Microscopy, Fluorescence, COS Cells, Animals, Receptor, trkB, Nerve Growth Factors, Pseudopodia, Cloning, Molecular, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%
bronze