Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2019 . Peer-reviewed
Data sources: Crossref
Development
Article . 2020
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy

Authors: Josh Strable; Erik Vollbrecht;

Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy

Abstract

Floral morphology is shaped by factors that modulate floral meristem activity and size, and the identity, number and arrangement of the lateral organs they form. We report the maize CRABS CLAW co-orthologs drooping leaf1 (drl1) and drl2 are required for development of ear and tassel florets. Pistillate florets of drl1 ears are sterile with unfused carpels that fail to enclose an expanded nucellus-like structure. Staminate florets of drl1 tassels have extra stamens and fertile anthers. Natural variation and transposon alleles of drl2 enhance drl1 mutant phenotypes by reducing floral meristem (FM) determinacy. The drl paralogs are co-expressed in lateral floral primordia, but not within the FM. drl expression together with the more indeterminate mutant FMs suggest that the drl genes regulate FM activity and impose meristem determinacy non-cell autonomously from differentiating cells in lateral floral organs. We used gene regulatory network inference, genetic interaction and expression analyses to suggest DRL1 and ZEA AGAMOUS1 target each other and a common set of downstream genes that function during floret development, thus defining a regulatory module that fine-tunes floret patterning and FM determinacy.

Related Organizations
Keywords

Gene Expression Profiling, Meristem, Flowers, Plants, Genetically Modified, Zea mays, Phenotype, Gene Expression Regulation, Plant, Mutation, DNA Transposable Elements, Gene Regulatory Networks, Inflorescence, Alleles, Plant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Average
Top 10%
hybrid