Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2001 . Peer-reviewed
Data sources: Crossref
Development
Article . 2001
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

even skippedis required to produce atrans-acting signal for larval neuroblast proliferation that can be mimicked by ecdysone

Authors: Miki Fujioka; Masatomo Kobayashi; Sumana Datta; James B. Jaynes; Youngji Park;

even skippedis required to produce atrans-acting signal for larval neuroblast proliferation that can be mimicked by ecdysone

Abstract

ABSTRACTDevelopment of a multicellular organism requires precise coordination of cell division and cell type determination. The selector homeoprotein Even skipped (Eve) plays a very specific role in determining cell identity in the Drosophila embryo, both during segmentation and in neuronal development. However, studies of gene expression in eve mutant embryos suggest that eve regulates the embryonic expression of the vast majority of genes. We present here genetic interaction and phenotypic analysis showing that eve functions in the trol pathway to regulate the onset of neuroblast division in the larval CNS. Surprisingly, Eve is not detected in the regulated neuroblasts, and culture experiments reveal that Eve is required in the body, not the CNS. Furthermore, the effect of an eve mutation can be rescued both in vivo and in culture by the hormone ecdysone. These results suggest that eve is required to produce a trans-acting factor that stimulates cell division in the larval brain.

Related Organizations
Keywords

Central Nervous System, Homeodomain Proteins, Male, Ecdysone, Molecular Sequence Data, Genes, Insect, Animals, Genetically Modified, Phenotype, Bacterial Proteins, Larva, Cyclin E, Mutation, Animals, Drosophila Proteins, Drosophila, Female, Amino Acid Sequence, Alleles, Cell Division, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Average
bronze