Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1995 . Peer-reviewed
Data sources: Crossref
Development
Article . 1995
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Drosophila 63F early puff contains E63-1, an ecdysone-inducible gene that encodes a novel Ca2+-binding protein

Authors: A J, Andres; C S, Thummel;

The Drosophila 63F early puff contains E63-1, an ecdysone-inducible gene that encodes a novel Ca2+-binding protein

Abstract

ABSTRACT Pulses of ecdysone at the end of Drosophila larval development dramatically reprogram gene expression as they signal the onset of metamorphosis. Ecdysone directly induces several early puffs in the salivary gland polytene chromosomes that, in turn, activate many late puffs. Three early puffs, at 2B5, 74EF, and 75B, have been studied at the molecular level. Each contains a single ecdysone primary-response gene that encodes a family of widely expressed transcription factors. We report here a molecular characterization of the 63F early puff. Unexpectedly, we have found this locus to be significantly different from the previously characterized early puff loci. First, the 63F puff contains a pair of ecdysone-inducible genes that are transcribed in the larval salivary glands: E63-1 and E63-2. Second, E63-1 induction in late third instar larvae appears to be highly tissue-specific, restricted to the salivary gland. Third, E63-1 encodes a novel Ca2+-binding protein related to calmodulin. The discovery of an ecdysone-inducible Ca2+-binding protein provides a foundation for integrating steroid hormone and calcium second messenger signaling pathways and generates an additional level for potential regulation of the ecdysone response.

Related Organizations
Keywords

Ecdysone, Base Sequence, Calcium-Binding Proteins, Molecular Sequence Data, Metamorphosis, Biological, Gene Expression Regulation, Developmental, Proteins, Genes, Insect, Sequence Analysis, DNA, Blotting, Northern, Salivary Glands, Animals, Drosophila Proteins, Drosophila, Amino Acid Sequence, In Situ Hybridization, DNA Primers, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!