Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1993 . Peer-reviewed
Data sources: Crossref
Development
Article . 1994
versions View all 2 versions
addClaim

Ultraviolet irradiation impairs epiboly in zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly

Authors: U, Strähle; S, Jesuthasan;

Ultraviolet irradiation impairs epiboly in zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly

Abstract

ABSTRACT Early morphogenesis of the teleost embryo is characterized by three orchestrated cell movements. Epiboly leads to spreading of the blastoderm over an uncleaved yolk cell while involution around the blastoderm margin and convergence movements towards the dorsal side generate the mesendodermal inner cell sheet and the axis rudiment, respectively. Irradiation of zebrafish zygotes with ultraviolet light selectively impairs epiboly resulting in embryos with open blastopores but well-formed anterior axes. Gastrulation movements are only marginally affected by ultraviolet irradiation. Involution of marginal cells in epiboly-retarded embryos takes place prior to 50% epiboly and thus appears independent of epiboly. Expression of dorsal and anterior marker genes is unaffected by ultraviolet irradiation. The ultraviolet light effect is not restricted to the zygote stage as irradiation of later embryonic stages also impairs epiboly. The ultraviolet-sensitive targets may thus be maternally encoded components of the machinery driving epiboly. These targets appear to be microtubules: firstly, irradiated embryos show disorganized and less microtubules in the cytoplasmic layer of the yolk sphere; secondly, the ultraviolet light effect can be mimicked by the microtubule-depolymerising agent nocodazole. We suggest that epiboly is driven, at least partially, by motors that use microtubules radiating from the yolk syncytial layer into the yolk cytoplasmic layer. Together with an observed constrictive behaviour of the blastoderm margin, we propose a two-force model of epiboly: epiboly is initiated and driven by a pulling force dependent on microtubules in the yolk cytoplasmic layer; contraction at the margin operates in addition to aid closure of the blastopore.

Related Organizations
Keywords

Ultraviolet Rays, Nocodazole, Morphogenesis, Animals, Dose-Response Relationship, Radiation, Gastrula, Microtubules, Zebrafish

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!