Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Project Euclidarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 1947
Data sources: Project Euclid
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Duke Mathematical Journal
Article . 1947 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Over-convergence on the circle of convergence

Authors: Erdös, Paul; Piranian, George;

Over-convergence on the circle of convergence

Abstract

Stellt die Potenzreihe \(\sum_{n=0}^\infty a_n z^n\) vom Konvergenzradius 1 eine analytische Funktion \(f(x)\) dar, die auf einem abgeschlossenen Bogen \(C\) des Einheitskreises regulär ist, so kann bekanntlich der Fall eintreten, daß eine Teilfolge \(s_{m_i} (z) (i=1,2,...)\) der Folge der Partialsummen \(s_m(z) = \sum_{n=0}^\infty a_n z^n\) \((m=0,1,...)\) der Reihe in einem den Bogen \(C\) enthaltenden Gebiet gleichmäßig gegen \(f(z)\) konvergiert. Nach dem Ostrowskischen Überkonvergenzsatz trifft dies für die Teilfolge \(s_{m_i} (z)\) genau dann zu, wenn zu der Indexfolge \(m_i\) eine zweite \(n_i\) mit \(\varliminf_{i \to \infty} n_i/m_i >1\) existiert derart daß \(a_n=0\) ist für alle \(n\) aus den Intervallen \(m_i1\) noch die Konvergenz der Folge \(s_{m_i}(z)\) auf dem Bogen \(C\) selbst behauptet werden kann. Daß dies unter geeigneten Bedingungen für die Koeffizientenfolge \(a_n\) möglich sein muß, zeigt schon der Satz von M. Riesz, nach dem die gesamte Folge \(s_m(z)\) längs \(C\) gleichmäßig gegen \(F(z)\) konvergiert, falls \(a_n \to 0\) gilt. Durch geeignete Modifikation des bekannten Landauschen Beweises des Rieszschen Satzes [vgl. \textit{E. Landau}, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Berlin 1929, S. 73] ergeben sich verschiedene Resultate der genannten Art. Der einfachste Satz lautet: Ist die Koeffizientenfolge \(a_n\) beschränkt und gilt \(a_n=0\) für \(m_i\leq n \leq n_i\), wo \(n_i-m_i \to \infty\) streben soll, so gilt \(s_{m_i}(z) \to f(z)\) gleichmäßig längs \(C\); genauer konvergiert \(s_{m_i}(z)\) so stark gegen \(f(z)\), daß mit jeder Konstanten \(k 0\) alle \(a_n = 0\) sind, deren Indizes \(n\) den Intervallen \(m_i

Keywords

30.0X, Boundary behavior of power series in one complex variable; over-convergence, Complex functions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green