
arXiv: 2406.19166
Using proof-theoretic methods in the style of proof mining, we give novel computationally effective limit theorems for the convergence of the Cesaro-means of certain sequences of random variables. These results are intimately related to various Strong Laws of Large Numbers and, in that way, allow for the extraction of quantitative versions of many of these results. In particular, we produce optimal polynomial bounds in the case of pairwise independent random variables with uniformly bounded variance, improving on known results; furthermore, we obtain a new Baum-Katz type result for this class of random variables. Lastly, we are able to provide a fully quantitative version of a recent result of Chen and Sung that encompasses many limit theorems in the Strong Laws of Large Numbers literature.
24 pages
60F10, 60F15 (Primary) 03F99 (Secondary), Strong limit theorems, Large deviations, strong laws of large numbers, Probability (math.PR), FOS: Mathematics, large deviations, Mathematics - Probability
60F10, 60F15 (Primary) 03F99 (Secondary), Strong limit theorems, Large deviations, strong laws of large numbers, Probability (math.PR), FOS: Mathematics, large deviations, Mathematics - Probability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
