Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2002 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

[1-Deamino-4-Cyclohexylalanine] Arginine Vasopressin: A Potent and Specific Agonist for Vasopressin V1b Receptors

Authors: Rolf C. Gaillard; Gilles Guillon; Hazel H. Szeto; M. Ben Mimoun; L. L. Cheng; Miriam Andrés; Mauro Giacomini; +5 Authors

[1-Deamino-4-Cyclohexylalanine] Arginine Vasopressin: A Potent and Specific Agonist for Vasopressin V1b Receptors

Abstract

To date, there are no vasopressin (VP) agonists that exhibit a high affinity and selectivity for the VP V1b receptor with respect to the V1a, V2, and oxytocin receptors. In this study, we describe the synthesis and pharmacological properties of [1-deamino-4-cyclohexylalanine] arginine vasopressin (d[Cha4]AVP). Binding experiments performed on various membrane preparations revealed that d[Cha(4)]AVP exhibits a nanomolar affinity for V1b receptors from various mammalian species (rat, bovine, human). It exhibits high V1b/V1a and V1b/oxytocin selectivity for rat, human, and bovine receptors. Furthermore, it exhibits high V1b/V2 specificity for both bovine and human vasopressin receptors. Functional studies performed on biological models that naturally express V1b receptors indicate that d[Cha4]AVP is an agonist. Like VP, it stimulated basal and corticotropin-releasing factor-stimulated ACTH secretion and basal catecholamine release from rat anterior pituitary and bovine chromaffin cells, respectively. In vivo experiments performed in rat revealed that d[Cha4]AVP was able to stimulate both ACTH and corticosterone secretion and exhibits negligible vasopressor activity. It retains about 30% of the antidiuretic activity of VP. This long-sought selective VP V1b receptor ligand with nanomolar affinity will allow a better understanding of V1b-mediated VP physiological effects and is a promising new tool for V1b receptor structure-function studies.

Keywords

Receptors, Vasopressin, Corticotropin-Releasing Hormone, Gene Expression, CHO Cells, Diuresis, Rats, Arginine Vasopressin, Catecholamines, Adrenocorticotropic Hormone, Pituitary Gland, Anterior, Receptors, Oxytocin, Cricetinae, Chromaffin System, Animals, Humans, Cattle, Female, Rats, Wistar, Corticosterone, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%
bronze