Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Clinical Endocrinology & Metabolism
Article . 2022 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Atherosclerosis
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

Triglyceride Metabolism Modifies Lipoprotein(a) Plasma Concentration

Authors: Maria Ramos-Cáceres; Itziar Lamiquiz-Moneo; Ana Cenarro; Pilar Calmarza; Victoria Marco-Benedí; Ana M Bea; Rocio Mateo-Gallego; +4 Authors

Triglyceride Metabolism Modifies Lipoprotein(a) Plasma Concentration

Abstract

AbstractBackgroundLipoprotein(a) (Lp(a)) is a significant cardiovascular risk factor. Knowing the mechanisms that regulate its concentration can facilitate the development of Lp(a)-lowering drugs. This study analyzes the relationship between triglycerides (TGs) and Lp(a) concentrations, cross-sectionally and longitudinally, and the influence of the number and composition of TG-rich lipoproteins, and the APOE genotype.MethodsData from Aragon Workers Health Study (AWHS) (n = 5467), National Health and Nutrition Examination Survey III phase 2 (n = 3860), and Hospital Universitario Miguel Servet (HUMS) (n = 2079) were used for cross-sectional TG and Lp(a) relationship. Lp(a) intrasubject variation was studied in AWHS participants and HUMS patients with repeated measurements. TG-rich lipoproteins were quantified by nuclear magnetic resonance in a subsample from AWHS. Apolipoproteins B and E were quantified by Luminex in very low-density lipoprotein (VLDL) isolated by ultracentrifugation, from HUMS samples. APOE genotyping was carried in AWHS and HUMS participants. Regression models adjusted for age and sex were used to study the association.ResultsThe 3 studies showed an inverse relationship between TG and Lp(a). Increased VLDL number, size, and TG content were associated with significantly lower Lp(a). There was an inverse association between the apoE concentration in VLDL and Lp(a). No significant association was observed for apolipoprotein (apo)B. Subjects carrying the apoE2/E2 genotype had significantly lower levels of Lp(a).ConclusionOur results show an inverse relationship Lp(a)-TG. Subjects with larger VLDL size have lower Lp(a), and lower values of Lp(a) were present in patients with apoE-rich VLDL and apoE2/E2 subjects. Our results suggest that bigger VLDLs and VLDLs enriched in apoE are inversely involved in Lp(a) plasma concentration.

Country
Spain
Keywords

Apolipoproteins E, Cross-Sectional Studies, Apolipoprotein E2, 610, Humans, Lipoproteins, VLDL, Nutrition Surveys, Triglycerides, Apolipoproteins B, Lipoprotein(a)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%
Green