<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11573/1706379 , 20.500.11850/582968
Abstract We study the motion of active Janus colloids in an optical trap using experiments, theory and numerical simulations. To achieve isotropic and harmonic confinement, we prototype microparticles with a nearly uniform refractive index and verify that, in the absence of activity, the confined motion is identical to that of optically homogeneous Brownian particles. If the activity is turned on by means of vertical AC fields, the density distributions are described by Boltzmann-like statistics (Gaussian with effective temperature) only for strongly confining traps, whereas weaker potentials give rise to non-Gaussian distributions with a bimodal shape. Our results showcase a simple way to study active soft matter in optical potential landscapes eliminating the optical torque.
Statistical Mechanics (cond-mat.stat-mech), Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, active matter; liquid crystal; molecular dynamics, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, active matter; liquid crystal; molecular dynamics, Condensed Matter - Statistical Mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |