
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The idiosyncratic nature and poor prognosis of drug-induced liver injury (DILI) make this type of reaction a major safety issue during drug development, as well as the most common cause for the withdrawal of drugs from the pharmaceutical market. The key to predicting and preventing DILI is understanding the underlying mechanisms. DILI is initiated by direct hepatotoxic effects of a drug, or a reactive metabolite of a drug. Parenchymal cell injury induces activation of innate and/or adaptive immune cells, which, in turn, produce proinflammatory and tissue hepatotoxic mediators, and/or mount immune reactions against drug-associated antigens. Understanding the molecular and cellular elements associated with these pathways can help identify risk factors and may ultimately facilitate the development of strategies to predict and prevent DILI.
Drug-Related Side Effects and Adverse Reactions, Liver Diseases, Animals, Humans, Chemical and Drug Induced Liver Injury, Immunity, Innate
Drug-Related Side Effects and Adverse Reactions, Liver Diseases, Animals, Humans, Chemical and Drug Induced Liver Injury, Immunity, Innate
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 282 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
