<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Two recent developments of opioid peptide-based analgesics are reviewed. The first part of the review discusses the dermorphin-derived, cationic-aromatic tetrapeptide H-Dmt-D-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA, where Dmt indicates 2',6'-dimethyltyrosine), which showed subnanomolar mu receptor binding affinity, extraordinary mu receptor selectivity, and high mu agonist potency in vitro. In vivo, [Dmt(1)]DALDA looked promising as a spinal analgesic because of its extraordinary antinociceptive effect (3000 times more potent than morphine) in the mouse tail-flick assay, long duration of action (4 times longer than morphine), and lack of effect on respiration. Unexpectedly, [Dmt(1)]DALDA also turned out to be a potent and long-acting analgesic in the tail-flick test when given subcutaneously (s.c.), indicating that it is capable of crossing the blood-brain barrier. Furthermore, little or no cross-tolerance was observed with s.c. [Dmt(1)]DALDA in morphine-tolerant mice. The second part of the review concerns the development of mixed mu agonist/delta antagonists that, on the basis of much evidence, are expected to be analgesics with a low propensity to produce tolerance and physical dependence. The prototype pseudopeptide H-Dmt-TicPsi[CH(2)NH]Phe-Phe-NH(2) (DIPP-NH(2)[Psi], where Tic indicates 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) showed subnanomolar mu and delta receptor binding affinities and the desired mu agonist/delta antagonist profile in vitro. DIPP-NH(2)[Psi] produced a potent analgesic effect after intracerebroventricular administration in the rat tail-flick assay, no physical dependence, and less tolerance than morphine. The results obtained with DIPP-NH(2)[Psi] indicate that mixed mu agonist/delta antagonists look promising as analgesic drug candidates, but compounds with this profile that are systemically active still need to be developed.
Analgesics, Opioid, Opioid Peptides, Animals, Humans, Pain Measurement, Protein Binding
Analgesics, Opioid, Opioid Peptides, Animals, Humans, Pain Measurement, Protein Binding
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |