Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arithmetic of Elliptic Curves

Authors: Tanja Lange; Christophe Doche;

Arithmetic of Elliptic Curves

Abstract

Elliptic curves constitute one of the main topics of this book. They have been proposed for applications in cryptography due to their fast group law and because so far no subexponential attack on their discrete logarithm problem (cf. Section 1.5) is known. We deal with security issues in later chapters and concentrate on the group arithmetic here. In an actual implementation this needs to be built on an efficient implementation of finite field arithmetic (cf. Chapter 11). In the sequel we first review the background on elliptic curves to the extent needed here. For a more general presentation of elliptic curves, see Chapter 4. Then we address the question of efficient implementation in large odd and in even characteristics. We refer mainly to [HAME+ 2003] for these sections. Note that there are several softwares packages or libraries able to work on elliptic curves, for example PARI/GP [PARI] and apecs [APECS]. The former is a linkable library that also comes with an interactive shell, whereas the latter is a Maple package. Both come with full sources. The computer algebra systems Magma [MAGMA] and SIMATH [SIMATH] can deal with elliptic curves, too. Elliptic curves have received a lot of attention throughout the past almost 20 years and many papers report experiments and timings for various field sizes and coordinates. We do not want to repeat the results but refer to [AVA 2004a, COMI+ 1998] and Section 14.7 for odd characteristic and [HALÓ+ 2000, LÓDA 1998, LÓDA 1999] for even characteristic. Another excellent and comprehensive reference comparing point multiplication costs and implementation results is [HAME+ 2003, Tables 3.12, 3.13 and 3.14 and Chap. 5].

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!