
Histidine (His) is one of the standard amino acids in proteins, and plays a critical role in plant growth and development. The chemical properties of the imidazole side group allow His to participate in acid-base catalysis, and in the co-ordination of metal ions. Despite the biological importance of this molecule, His biosynthesis has been somewhat neglected in plants, in stark contrast to micro-organisms where the study of this pathway was fundamental in the discovery of operon structure and regulation by attenuation. With the recent isolation of histidinol-phosphate phosphatase, all the enzymes of His biosynthesis have now been identified in Arabidopsis, and several lines of evidence have implicated ATP-phosphoribosyl transferase (which catalyses the first committed step of the pathway) as playing an important role in the regulation of this pathway. However, little is known about the transcriptional regulation of the His biosynthetic genes, nor how demand for this amino acid is balanced with other metabolic requirements in plants. Similarly, the pathway of His catabolism has yet to be determined.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 84 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
