Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of the New Yo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Toll‐like Receptors in Autoimmunity

Authors: Maria, Fischer; Marc, Ehlers;

Toll‐like Receptors in Autoimmunity

Abstract

Both genetic predispositions and environmental factors contribute to the development of autoimmunity. Toll‐like receptors (TLR) are a family of pattern recognition receptors (PRRs), and their stimulus by pathogen‐associated molecular patterns (PAMPs) and damage‐associated molecular patterns (DAMPs) is an important prerequisite for the induction of various autoimmune diseases. However, activation of specific TLRs can not only induce but also inhibit autoimmune diseases in certain mouse models. The contribution of individual TLRs to the induction of autoimmunity or tolerance involves hematopoietic as well as nonhematopoietic cells expressing combinations of different TLRs. The intercellular and intracellular orchestration of signals from different TLRs, other PRRs, and membrane‐standing receptors dictates activating or inhibitory responses. Here, we summarize TLR‐dependent tolerance mechanisms in B cells and intestinal epithelial cells and TLR‐mediated activation mechanisms leading to the induction of Th17 T cell differentiation in different autoimmune diseases and in inflammatory bowel diseases. Understanding the opposing mechanisms of TLRs for the induction and suppression of autoimmune processes in specific diseases will help to develop novel therapies to treat autoimmunity.

Keywords

Multiple Sclerosis, Toll-Like Receptors, Animals, Humans, Lupus Erythematosus, Systemic, Autoimmunity, Inflammatory Bowel Diseases, Models, Biological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!