Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of the New Yo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Modulation of Transmural Repolarization

Authors: Charles, Antzelevitch;

Modulation of Transmural Repolarization

Abstract

Abstract: Ventricular myocardium in larger mammals has been shown to be comprised of three distinct cell types: epicardial, M, and endocardial. Epicardial and M cell action potentials differ from endocardial cells with respect to the morphology of phase 1. These cells possess a prominent Ito‐mediated notch responsible for the “spike and dome” morphology of the epicardial and M cell response. M cells are distinguished from the other cell types in that they display a smaller IKs, but a larger late INa and INa‐Ca. These ionic distinctions underlie the longer action potential duration (APD) and steeper APD‐rate relationship of the M cell. Difference in the time course of repolarization of phase 1 and phase 3 are responsible for the inscription of the electrocardiographic J wave and T wave, respectively. These repolarization gradients are sensitively modulated by electrotonic communication among the three cells types, [K1]o, and the presence of drugs that either reduce or augment net repolarizing current. A reduction in net repolarizing current generally leads to a preferential prolongation of the M cell action potential, responsible for a prolongation of the QT interval and an increase in transmural dispersion of repolarization (TDR), which underlies the development of torsade de pointes arrhythmias. An increase in net repolarizing current can lead to a preferential abbreviation of the action potential of epicardium in the right ventricle (RV), and endocardium in the left ventricle (LV). These actions also lead to a TDR that manifests as the Brugada syndrome in RV and the short QT syndrome in LV.

Related Organizations
Keywords

Electrophysiology, Long QT Syndrome, Heart Conduction System, Heart Ventricles, Tachycardia, Ventricular, Action Potentials, Animals, Humans, Ventricular Function, Syndrome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Average
Top 10%
Top 10%
bronze