<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Lipid phosphate phosphatases (LPPs) regulate cell signaling by modifying the concentrations of lipid phosphates versus their dephosphorylated products. The ecto-activity regulates the availability of extracellular lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) and thereby signaling by their respective receptors. LPP products (monoacylglycerol or sphingosine) are taken up by cells and rephosphorylated to produce LPA and S1P, respectively, which activate intracellular signaling cascades. The proposed integrin binding domain on the external surface of LPP3 modifies cell/cell interactions. Expression of LPPs on internal membranes controls signaling depending on the access of lipid phosphates to their active sites. Different LPPs perform distinct functions, probably based on integrin binding, their locations, and their abilities to metabolize different lipid phosphates in vivo.
autotaxin, diacylglycerol, lysophosphatidate, Intracellular Space, Phosphatidate Phosphatase, QD415-436, Biochemistry, phosphatidate, Sphingosine, Animals, Humans, Lysophospholipids, Extracellular Space, ceramide 1-phosphate, sphingosine 1-phosphate, Signal Transduction
autotaxin, diacylglycerol, lysophosphatidate, Intracellular Space, Phosphatidate Phosphatase, QD415-436, Biochemistry, phosphatidate, Sphingosine, Animals, Humans, Lysophospholipids, Extracellular Space, ceramide 1-phosphate, sphingosine 1-phosphate, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 180 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |