<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.11824/1409 , 11250/3137644
Modern geosteering is heavily dependent on real-time interpretation of deep electromagnetic (EM) measurements. We have developed a methodology to construct a deep neural network (DNN) model trained to reproduce a full set of extra-deep EM logs consisting of 22 measurements per logging position. The model is trained in a 1D layered environment consisting of up to seven layers with different resistivity values. A commercial simulator provided by a tool vendor is used to generate a training data set. The data set size is limited because the simulator provided by the vendor is optimized for sequential execution. Therefore, we design a training data set that embraces the geologic rules and geosteering specifics supported by the forward model. We use this data set to produce an EM simulator based on a DNN without access to the proprietary information about the EM tool configuration or the original simulator source code. Despite using a relatively small training set size, the resulting DNN forward model is quite accurate for the considered examples: a multilayer synthetic case and a section of a published historical operation from the Goliat field. The observed average evaluation time of 0.15 ms per logging position makes it also suitable for future use as part of evaluation-hungry statistical and/or Monte Carlo inversion algorithms within geosteering workflows.
Signal Processing (eess.SP), Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Computer Science - Computational Engineering, Finance, and Science, Machine Learning (cs.LG)
Signal Processing (eess.SP), Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Computer Science - Computational Engineering, Finance, and Science, Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |