
doi: 10.1190/1.1442789
The migrator’s equation, which gives the relationship between real and apparent dips on a reflector in zero‐offset reflection seismic sections, may be readily implemented in one step with a frequency‐domain migration algorithm for homogeneous media. Huygens’ principle is used to derive a similar relationship for anisotropic media where velocities are directionally dependent. The anisotropic form of the migrator’s equation is applicable to both elliptically and nonelliptically anisotropic media. Transversely isotropic media are used to demonstrate the performance of an f-k implementation of the migrator’s equation for anisotropic media. In such a medium SH-waves are elliptically anisotropic, while P-waves are nonelliptically anisotropic. Numerical model data and physical model data demonstrate the performance of the algorithm, in each case recovering the original structure. Isotropic and anisotropic migration of anisotropic physical model data are compared experimentally, where the anisotropic velocity function of the medium has a vertical axis of symmetry. Only when anisotropic migration is used is the original structure recovered.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
