<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractAnomaly detection is a relevant problem in the area of data analysis. In networked systems, where individual entities interact in pairs, anomalies are observed when pattern of interactions deviates from patterns considered regular. Properly defining what regular patterns entail relies on developing expressive models for describing the observed interactions. It is crucial to address anomaly detection in networks. Among the many well-known models for networks, latent variable models—a class of probabilistic models—offer promising tools to capture the intrinsic features of the data. In this work, we propose a probabilistic generative approach that incorporates domain knowledge, i.e., community membership, as a fundamental model for regular behavior, and thus flags potential anomalies deviating from this pattern. In fact, community membership serves as the building block of a null model to identify the regular interaction patterns. The structural information is included in the model through latent variables for community membership and anomaly parameter. The algorithm aims at inferring these latent parameters and then output the labels identifying anomalies on the network edges.
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer engineering. Computer hardware, Community detection, J.4, 68-XX, Computer Science - Social and Information Networks, Anomaly detection, Information technology, QA75.5-76.95, T58.5-58.64, TK7885-7895, Electronic computers. Computer science, Probabilistic models, Latent variable models
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer engineering. Computer hardware, Community detection, J.4, 68-XX, Computer Science - Social and Information Networks, Anomaly detection, Information technology, QA75.5-76.95, T58.5-58.64, TK7885-7895, Electronic computers. Computer science, Probabilistic models, Latent variable models
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |