
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions. Recently, airway basal stem cells (BSCs) have emerged as a novel therapeutic strategy in pulmonary regenerative medicine because of their substantial potential in repairing lung structure and function. Airway BSCs, which are strongly capable of self-renewal and multi-lineage differentiation, can effectively attenuate airway epithelial injury caused by environmental factors or genetic disorders, such as cystic fibrosis. This review comprehensively explores the efficacy and action mechanisms of airway BSCs across various lung disease models and describes potential strategies for inducing pluripotent stem cells to differentiate into pulmonary epithelial lineages on the basis of the original research findings. Additionally, the review also discusses the technical and biological challenges in translating these research findings into clinical applications and offers prospective views on future research directions, therefore broadening the landscape of pulmonary regenerative medicine.
Lung Diseases, Medicine (General), Airway epithelium, Cell Differentiation, QD415-436, Review, Regenerative Medicine, Biochemistry, R5-920, Pluripotent stem cells, Regenerative medicine, Humans, Animals, Epithelial repair, Lung diseases, Airway basal stem cells, Stem Cell Transplantation
Lung Diseases, Medicine (General), Airway epithelium, Cell Differentiation, QD415-436, Review, Regenerative Medicine, Biochemistry, R5-920, Pluripotent stem cells, Regenerative medicine, Humans, Animals, Epithelial repair, Lung diseases, Airway basal stem cells, Stem Cell Transplantation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
