
Abstract Background The ATP-dependent DNA ligase Lig E is present as an accessory DNA ligase in numerous proteobacterial genomes, including many disease-causing species. Here we have constructed a genomic Lig E knock-out in the obligate human pathogen Neisseria gonorrhoeae and characterised its growth and infection phenotype. Results This demonstrates that N. gonorrhoeae Lig E is a non-essential gene and its deletion does not cause defects in replication or survival of DNA-damaging stressors. Knock-out strains were partially defective in biofilm formation on an artificial surface as well as adhesion to epithelial cells. In addition to in vivo characterisation, we have recombinantly expressed and assayed N. gonorrhoeae Lig E and determined the crystal structure of the enzyme-adenylate engaged with DNA substrate in an open non-catalytic conformation. Conclusions These findings, coupled with the predicted extracellular/ periplasmic location of Lig E indicates a role in extracellular DNA joining as well as providing insight into the binding dynamics of these minimal DNA ligases.
DNA Ligases, Biofilm, Research, Lig E, DNA repair, DNA, Microbiology, QR1-502, Neisseria gonorrhoeae, DNA Ligase ATP, DNA ligase, Biofilms, Periplasm, Humans
DNA Ligases, Biofilm, Research, Lig E, DNA repair, DNA, Microbiology, QR1-502, Neisseria gonorrhoeae, DNA Ligase ATP, DNA ligase, Biofilms, Periplasm, Humans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
