
Genome-wide association studies (GWAS) analyze the genetic component of a phenotype or the etiology of a disease. Despite the success of many GWAS, little progress has been made in uncovering the underlying mechanisms for many diseases. The use of metabolomics as a readout of molecular phenotypes has enabled the discovery of previously undetected associations between diseases and signaling and metabolic pathways. In addition, combining GWAS and metabolomic information allows the simultaneous analysis of the genetic and environmental impacts on homeostasis. Most success has been seen in metabolic diseases such as diabetes, obesity and dyslipidemia. Recently, associations between loci such as FADS1, ELOVL2 or SLC16A9 and lipid concentrations have been explained by GWAS with metabolomics. Combining GWAS with metabolomics (mGWAS) provides the robust and quantitative information required for the development of specific diagnostics and targeted drugs. This review discusses the limitations of GWAS and presents examples of how metabolomics can overcome these limitations with the focus on metabolic diseases.
Review
Review
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
