
An association between protein glycosylation and tumorigenesis has been recognized for over 10 years. Associations linking the importance of glycosylation events to tumor biology, especially the progression to metastatic disease, have been noted over many years, Recently, a mouse model in which beta1,6-N-acetylglucosaminyltransferase V (a rate-limiting enzyme in the N-glycan pathway) has been knocked out, was used to demonstrate the importance of glycosylation in tumor progression. By crossing mice lacking this enzyme with a transgenic mouse model of metastatic breast cancer, metastatic progression of the disease was dramatically reduced. These experiments provide in vivo evidence for the role of N-linked glycosylation in metastatic breast cancer and have significant implications for the development of new treatment strategies.
Mice, Knockout, Glycosylation, Mammary Neoplasms, Experimental, Mice, Transgenic, N-Acetylglucosaminyltransferases, Disease Models, Animal, Mice, Polysaccharides, Commentary, Animals, Female, Neoplasm Metastasis
Mice, Knockout, Glycosylation, Mammary Neoplasms, Experimental, Mice, Transgenic, N-Acetylglucosaminyltransferases, Disease Models, Animal, Mice, Polysaccharides, Commentary, Animals, Female, Neoplasm Metastasis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 84 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
