<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 23514539
pmc: PMC3623648
The M1 muscarinic acetylcholine receptor (M1ACh-R) is a G protein-coupled receptor that can occur in interconvertible coupled and uncoupled states. It is enriched in the basal ganglia, hippocampus, olfactory bulb, and cortical areas, and plays a role in motor and cognitive functions. Muscarinic M1 agonists are potential therapeutic agents for cognitive disorders. The aim of this study was to evaluate [11C]AF150(S) as a putative M1ACh-R agonist PET ligand, which, owing to its agonist properties, could provide a tool to explore the active G protein-coupled receptor.Regional kinetics of [11C]AF150(S) in rat brain were measured using a high-resolution research tomograph, both under baseline conditions and following pre-treatment with various compounds or co-administration of non-radioactive AF150(S). Data were analysed by calculating standard uptake values and by applying the simplified reference tissue model (SRTM).[11C]AF150(S) was rapidly taken up in the brain, followed by a rapid clearance from all brain regions. Analysis of PET data using SRTM revealed a binding potential (BPND) of 0.25 for the striatum, 0.20 for the hippocampus, 0.16 for the frontal cortical area and 0.15 for the posterior cortical area, all regions rich in M1ACh-R. BPND values were significantly reduced following pre-treatment with M1ACh-R antagonists. BPND values were not affected by pre-treatment with a M3ACh-R antagonist. Moreover, BPND was significantly reduced after pre-treatment with haloperidol, a dopamine D2 receptor blocker that causes an increase in extracellular acetylcholine (ACh). The latter may compete with [11C]AF150(S) for binding to the M1ACh-R; further pharmacological agents were applied to investigate this possibility. Upon injection of the highest dose (49.1 nmol kg-1) of [11C]AF150(S) diluted with non-radioactive AF150(S), brain concentration of AF150(S) reached 100 nmol L-1 at peak level. At this concentration, no sign of saturation in binding to M1ACh-R was observed.The agonist PET ligand [11C]AF150(S) was rapidly taken up in the brain and showed an apparent specific M1ACh-R-related signal in brain areas that are rich in M1ACh-R. Moreover, binding of the agonist PET ligand [11C]AF150(S) appears to be sensitive to changes in extracellular ACh levels. Further studies are needed to evaluate the full potential of [11C]AF150(S) for imaging the active pool of M1ACh-R in vivo.
SDG 3 - Good Health and Well-being, Original Research
SDG 3 - Good Health and Well-being, Original Research
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |