Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Columbia University ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Research Notes
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Research Notes
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.7916/d8p...
Other literature type . 2013
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

“Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae”

Authors: Smith, Hannah; Nelson, Kevin; Calaunan, Edison; Smith, Arnold; Nguyen, Victoria;

“Affect of anaerobiosis on the antibiotic susceptibility of H. influenzae”

Abstract

Background: Haemophilus influenzae is a human-restricted facultative anaerobe which resides mostly in the oropharynx. The majority of isolates recovered from the throat are unencapsulated commensals (NTHi), but depending on host susceptibility they cause bronchitis, otitis media and on occasion bacteremia and meningitis. Because of the variable oxygen availability in the various niche permitting bacterium replication, the organism must thrive in well oxygenated surfaces, such as pharyngeal epithelium to anoxic environments like the bottom of a Biofilm and in airway mucus. Other reports indicate that H. influenzae use aerobic respiration, anaerobic respiration and fermentation to generate ATP. To gain insight in to the activity of several classes of antibiotics against five well-characterized unencapsulated H. influenzae in room air, in 5% CO₂ and under strict anaerobiosis. We also tested for the role of oxidative killing by all cidal antibiotics. Results: In comparison to room air, testing in 5% CO₂ had minimal effects on the susceptibility to aminoglycosides, cephalosporins, tetracycline and chloramphenicol: the MIC of rifampin and ciprofloxacin increased eight fold with certain strains in 5% CO₂. All antibiotics, except trimethoprim were cidal under both growth conditions. Aminoglycosides remained bactericidal in a strict anaerobic environment, while a reliable MBC was obtained with trimethoprim only under anaerobic conditions. Kinetic analysis of the cidal action of spectinomycin and tetracycline indicated slower killing anaerobically. An oxidative mechanism for aerobic killing could not be demonstrated. Conclusions: We conclude that β-lactams, cephalosporins, macrolides, tetracycline’s, aminoglycosides, chloramphenicol, rifampin and ciprofloxacin are bactericidal against five well-characterizes H. influenzae in an aerobic and anaerobic environment. The activity of trimethoprim was increased in anaerobic conditions.

Country
United States
Keywords

Medicine(all), 570, Cell Membrane Permeability, Biochemistry, Genetics and Molecular Biology(all), Anaerobic infections in children, 610, Anaerobic infections, Microbial Sensitivity Tests, Haemophilus influenzae, Microbiology, Aerobiosis, Anti-Bacterial Agents, Oxidative Stress, Anaerobic bacteria, FOS: Biological sciences, Microorganisms--Effect of antibiotics on, Medicine, Anaerobiosis, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold