
AbstractThe most successful achievable schemes for ad hoc wireless networks are those based on establishing cooperative multiple-input and multiple-output links. In this article, we analyze one of the important design parameters of such schemes, namely the number of quantization bits. Due to the digital architecture of these schemes, the received signal at nodes should become quantized before further processing. The scheme’s aggregate throughput highly depends on the resolution of the quantization process. We demonstrate that there is an optimum number of quantization bits which maximizes the network throughput. We show that the optimum number of quantization bits scales asβlog2(SNR), for any strictly positiveβindependent of SNR, for the high SNR regime. Furthermore, we derive the optimum scaling of network throughput in such a regime. It is concluded that a good management of the number of quantization bits as a design parameter has a significant impact on the network performance.
Computer Networks and Communications, Signal Processing, Computer Science Applications
Computer Networks and Communications, Signal Processing, Computer Science Applications
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
