
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The corpus luteum (CL) is a site of intense angiogenesis. Within a short period, this is followed either by controlled regression of the microvascular tree in the non-fertile cycle, or maintenance and stabilisation of the new vasculature a conceptual cycle. The molecular regulation of these diverse aspects is examined. The CL provides a unique model system in which to study the cellular and molecular regulation of angiogenesis. Vascular endothelial growth factor (VEGF) has been found to have a major role in the CL. By targeting its action at specific stages of the luteal phase in vivo by antagonists, profound inhibitory effects on luteal angiogenesis and function are observed.
QH471-489, Reproduction, Neovascularization, Physiologic, Gynecology and obstetrics, Review, Luteal Phase, Corpus Luteum, Pregnancy, RG1-991, Animals, Humans, Female
QH471-489, Reproduction, Neovascularization, Physiologic, Gynecology and obstetrics, Review, Luteal Phase, Corpus Luteum, Pregnancy, RG1-991, Animals, Humans, Female
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 126 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
