<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
La dengue est une maladie qui est maintenant endémique dans plus de 100 pays d'Afrique, d'Amérique, d'Asie et du Pacifique occidental. Elle est transmise à l'homme par les moustiques (Aedes) et existe sous deux formes : la dengue et la dengue hémorragique. La maladie peut être contractée par l'un des quatre virus différents. De plus, l'immunité n'est acquise que pour le sérotype contracté et un contact avec un deuxième sérotype devient plus dangereux. Le présent article traite d'une succession de deux épidémies causées par deux virus différents. La dynamique de la maladie est étudiée par un modèle compartimental impliquant des équations différentielles ordinaires pour les populations humaines et de moustiques. La stabilité des points d'équilibre est donnée et une simulation est réalisée avec différentes valeurs des paramètres. La dynamique épidémique est discutée et l'illustration est donnée par des chiffres pour différentes valeurs des paramètres. Le modèle proposé permet de mieux comprendre la dynamique de la maladie. L'environnement et les stratégies de vaccination sont discutés en particulier dans le cas de la succession de deux épidémies avec deux virus différents.
El dengue es una enfermedad que ahora es endémica en más de 100 países de África, América, Asia y el Pacífico Occidental. Se transmite al hombre por mosquitos (Aedes) y existe en dos formas: fiebre del dengue y fiebre hemorrágica del dengue. La enfermedad puede ser contraída por uno de los cuatro virus diferentes. Además, la inmunidad se adquiere solo al serotipo contraído y un contacto con un segundo serotipo se vuelve más peligroso. El presente trabajo trata sobre una sucesión de dos epidemias causadas por dos virus diferentes. La dinámica de la enfermedad se estudia mediante un modelo compartimental que involucra ecuaciones diferenciales ordinarias para las poblaciones humanas y de mosquitos. Se da estabilidad de los puntos de equilibrio y se realiza una simulación con diferentes valores de los parámetros. Se discute la dinámica epidémica y se ilustra con cifras para diferentes valores de los parámetros. El modelo propuesto permite una mejor comprensión de la dinámica de la enfermedad. El medio ambiente y las estrategias de vacunación se discuten especialmente en el caso de la sucesión de dos epidemias con dos virus diferentes.
Dengue is a disease which is now endemic in more than 100 countries of Africa, America, Asia and the Western Pacific. It is transmitted to the man by mosquitoes (Aedes) and exists in two forms: Dengue Fever and Dengue Haemorrhagic Fever. The disease can be contracted by one of the four different viruses. Furthermore, immunity is acquired only to the serotype contracted and a contact with a second serotype becomes more dangerous. The present paper deals with a succession of two epidemics caused by two different viruses. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the human and the mosquito populations. Stability of the equilibrium points is given and a simulation is carried out with different values of the parameters. The epidemic dynamics is discussed and illustration is given by figures for different values of the parameters. The proposed model allows for better understanding of the disease dynamics. Environment and vaccination strategies are discussed especially in the case of the succession of two epidemics with two different viruses.
Dengue is a disease which is now endemic in more than 100 countries of Africa, America, Asia and the Western Pacific. It is transmitted to the man by mosquitoes (Aedes) and exists in two forms: Dengue Fever and Dengue Haemorrhagic Fever. The disease can be contracted by one of the four different viruses. Moreover, immunity is acquired only to the serotype contracted and a contact with a second serotype becomes more dangerous. The present paper deals with a succession of two epidemics caused by two different viruses. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the human and the mosquito populations. Stability of the equilibrium points is given and a simulation is carried out with different values of the parameters. The epidemic dynamics is discussed and illustration is given by figures for different values of the parameters. The proposed model allows for better understanding of the disease dynamics. Environment and vaccination strategies are discussed especially in the case of the succession of two epidemics with two different viruses.
حمى الضنك مرض متوطن الآن في أكثر من 100 دولة في أفريقيا وأمريكا وآسيا وغرب المحيط الهادئ. تنتقل إلى الرجل عن طريق البعوض (الزاعجة) وتوجد في شكلين: حمى الضنك وحمى الضنك النزفية. يمكن أن يصاب بالمرض أحد الفيروسات الأربعة المختلفة. علاوة على ذلك، يتم اكتساب المناعة فقط للنمط المصلي المتقلص ويصبح الاتصال بالنمط المصلي الثاني أكثر خطورة. تتناول هذه الورقة سلسلة من وباءين ناجمين عن فيروسين مختلفين. تتم دراسة ديناميكيات المرض من خلال نموذج مقصور يتضمن معادلات تفاضلية عادية للإنسان والبعوض. يتم إعطاء استقرار نقاط التوازن ويتم إجراء محاكاة بقيم مختلفة للمعلمات. تتم مناقشة ديناميكيات الوباء ويتم تقديم التوضيح من خلال الأرقام للقيم المختلفة للمعلمات. يسمح النموذج المقترح بفهم أفضل لديناميكيات المرض. تتم مناقشة استراتيجيات البيئة والتطعيم خاصة في حالة تعاقب وباءين بفيروسين مختلفين.
Mosquito Control, Epidemic Models, Population Dynamics, Dengue vaccine, Dengue virus, Disease Outbreaks, Dengue, Aedes aegypti, Epidemic model, Pathology, Disease, Geography, Ecology, Modeling the Dynamics of COVID-19 Pandemic, Evolutionary Dynamics of Genetic Adaptation and Mutation, Vaccination, Life Sciences, Environmental health, Disease Transmission and Population Dynamics, Modeling and Simulation, Larva, Physical Sciences, Medicine, Population, 610, Host-Parasite Interactions, Epidemic disease, Serotype, Ecological succession, Biochemistry, Genetics and Molecular Biology, Virology, Health Sciences, Medical technology, FOS: Mathematics, Genetics, Animals, Humans, R855-855.5, Serotyping, Biology, Models, Statistical, Research, Public Health, Environmental and Occupational Health, Dengue Virus, Dengue fever, Insect Vectors, Culicidae, FOS: Biological sciences, Mathematics
Mosquito Control, Epidemic Models, Population Dynamics, Dengue vaccine, Dengue virus, Disease Outbreaks, Dengue, Aedes aegypti, Epidemic model, Pathology, Disease, Geography, Ecology, Modeling the Dynamics of COVID-19 Pandemic, Evolutionary Dynamics of Genetic Adaptation and Mutation, Vaccination, Life Sciences, Environmental health, Disease Transmission and Population Dynamics, Modeling and Simulation, Larva, Physical Sciences, Medicine, Population, 610, Host-Parasite Interactions, Epidemic disease, Serotype, Ecological succession, Biochemistry, Genetics and Molecular Biology, Virology, Health Sciences, Medical technology, FOS: Mathematics, Genetics, Animals, Humans, R855-855.5, Serotyping, Biology, Models, Statistical, Research, Public Health, Environmental and Occupational Health, Dengue Virus, Dengue fever, Insect Vectors, Culicidae, FOS: Biological sciences, Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 150 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |