Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Pulmonary Medici...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Pulmonary Medicine
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Pulmonary Medicine
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Pulmonary Medicine
Article
License: Springer TDM
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determinants of arterial stiffness in COPD

Authors: Mark T. Dransfield; Mark T. Dransfield; Jubal R. Watts; Hrudaya Nath; James M. Wells; John R. Cockcroft; Surya P. Bhatt; +1 Authors

Determinants of arterial stiffness in COPD

Abstract

Cardiovascular morbidity and mortality is high in patients with chronic obstructive pulmonary disease (COPD) and arterial stiffness is a potentially modifiable risk factor with added predictive value beyond that obtained from traditional risk factors. Arterial stiffness has been the target of pharmacologic and exercise interventions in patients with COPD, but the effects appear limited to those patients with more significant elevations in arterial stiffness. We aimed to identify predictors of increased arterial stiffness in a cohort with moderate to severe COPD.Aortic pulse wave velocity (aPWV) was measured in subjects with moderate to severe COPD enrolled in a multicenter randomized controlled trial. Subjects were categorized into quartiles based on aPWV values and factors affecting high arterial stiffness were assessed. Multivariate models were created to identify independent predictors of high aPWV, and cardiovascular disease (CVD).153 patients were included. Mean age was 63.2 (SD 8.2) years and mean FEV1 was 55.4 (SD 15.2) % predicted. Compared to the quartile with the lowest aPWV, subjects in the highest quartile were older, had higher systolic blood pressure (SBP), were more likely to be current smokers, and had greater burden of thoracic aortic calcification. On multivariate analyses, age (adjusted OR 1.14, 95%CI 1.05 to 1.25, p = 0.003) and SBP (adjusted OR 1.06, 95% CI 1.02 to 1.09, p = 0.001) were independent predictors of elevated aPWV. Body mass index, therapy with cholesterol lowering medications and coronary calcification were independent predictors of CVD.Elevated arterial stiffness in patients with COPD can be predicted using age, blood pressure and thoracic aortic calcification. This will help identify subjects for enrollment in clinical trials using aPWV for assessing the impact of COPD therapies on CV outcomes.

Keywords

Pulmonary and Respiratory Medicine, Male, Pulmonary Disease, Chronic Obstructive, Vascular Stiffness, Risk Factors, Humans, Female, Middle Aged, Severity of Illness Index, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    107
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
107
Top 10%
Top 10%
Top 1%
Green
gold