<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract Background The flat bones of the skull (i.e., the frontal and parietal bones) normally form through intramembranous ossification. At these sites cranial mesenchymal cells directly differentiate into osteoblasts without the formation of a cartilage intermediate. This type of ossification is distinct from endochondral ossification, a process that involves initial formation of cartilage and later replacement by bone. Results We have analyzed a line of transgenic mice that expresses FGF9, a member of the fibroblast growth factor family (FGF), in cranial mesenchymal cells. The parietal bones in these mice show a switch from intramembranous to endochondral ossification. Cranial cartilage precursors are induced to proliferate, then hypertrophy and are later replaced by bone. These changes are accompanied by upregulation of Sox9, Ihh, Col2a1, Col10a1 and downregulation of CbfaI and Osteocalcin. Fate mapping studies show that the cranial mesenchymal cells in the parietal region that show a switch in cell fate are likely to be derived from the mesoderm. Conclusion These results demonstrate that FGF9 expression is sufficient to convert the differentiation program of (at least a subset of) mesoderm-derived cranial mesenchyme cells from intramembranous to endochondral ossification.
Fibroblast Growth Factor 9, Skull, Cell Differentiation, Mice, Transgenic, Mesoderm, Parietal Bone, Mice, Chondrocytes, Osteogenesis, Animals, Receptor, Fibroblast Growth Factor, Type 3, Receptor, Fibroblast Growth Factor, Type 2, Biomarkers, Research Article, Cell Proliferation
Fibroblast Growth Factor 9, Skull, Cell Differentiation, Mice, Transgenic, Mesoderm, Parietal Bone, Mice, Chondrocytes, Osteogenesis, Animals, Receptor, Fibroblast Growth Factor, Type 3, Receptor, Fibroblast Growth Factor, Type 2, Biomarkers, Research Article, Cell Proliferation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |