Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bloodarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
Data sources: UnpayWall
Blood
Article . 1987 . Peer-reviewed
Data sources: Crossref
Blood
Article . 1987 . Peer-reviewed
Data sources: Crossref
Blood
Article . 1987
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of a functional role for human erythrocyte sialoglycoproteins beta and gamma

Authors: Narla Mohandas; Joel Anne Chasis; Marion E. Reid;

Identification of a functional role for human erythrocyte sialoglycoproteins beta and gamma

Abstract

Abstract Four distinct erythrocyte membrane sialoglycoproteins (SGPs) denoted alpha, beta, gamma, and delta have been described, but their functions have not yet been defined. Recent evidence suggests that several of these SGPs associate with membrane skeletal proteins. Because the membrane skeletal protein network plays an important role in regulating the membrane material properties of deformability and mechanical stability, we wanted to determine whether the SGPs, through their interaction with the membrane skeleton, can modulate these membrane properties. We measured membrane mechanical stability and membrane deformability of erythrocytes that were deficient in either alpha, or delta or beta and gamma SGPs. Only erythrocytes deficient in beta and gamma SGP had altered membrane properties, as evidenced by marked decreases in both membrane mechanical stability (50% of normal) and membrane deformability (40% of normal). Erythrocytes deficient in either alpha or delta SGP had normal deformability and stability. Based on these data, we suggest that an interaction of beta and/or gamma SGP with the membrane skeleton plays a functionally important role in regulating normal erythrocyte membrane properties.

Related Organizations
Keywords

Cytoskeletal Proteins, Erythrocyte Deformability, Sialoglycoproteins, Erythrocyte Membrane, Humans, Membrane Proteins, Cytoskeleton

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Average
Top 10%
Top 10%
bronze