Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2009
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2008
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hematopoietic Stem Cells Contribute to Lymphatic Endothelium.

Authors: William H. Fleming; Melissa H. Wong; Philip R. Streeter; Erin M. Hewett; John R. Swain; Shuguang Jiang; Alexis S. Bailey;

Hematopoietic Stem Cells Contribute to Lymphatic Endothelium.

Abstract

Abstract The lymphatic system plays an important physiological role in vascular and immune homeostasis. Lymphatic vessel function is implicated in a number of pathological conditions including tumor metastasis and impaired wound healing. The identity and origin of lymphatic endothelial precursors is poorly understood. Previously we have shown that adult bone marrow-derived, hematopoietic stem cells (HSCs, c-kit+, Sca-1+, lineage−) can differentiate into functional blood vascular endothelial cells. Given the close relationship between the blood and lymphatic vascular systems, we have investigated whether HSCs also give rise to lymphatic endothelial cells (LEC). GFP+ HSCs were transplanted into lethally irradiated (1200 cGy) recipient mice. Donor-derived LEC expressing lymphatic endothelial markers including LYVE-1 and VEGFR3 were clearly distinguished from hematopoietic cells by the absence of CD45 and F4/80 expression. Deconvolution microscopy confirmed the co-localization of donor and LEC marker expression in individual cells. Transplanted HSCs gave rise to LEC in the liver, gut, gastric and kidney. Donor-derived LEC were detected in 2.4% of liver lymphatic vessels at 4 weeks and persisted for at least 12 months (mean of 3.4%). The self-renewal capacity of HSC-derived lymphatic progenitor cells was demonstrated by serial transplantation. The contribution of these progenitors to tumor lymphatics was evaluated. Transplantation of HSCs into young Min−/− mice resulted in the incorporation of donor-derived LEC into the lymphatics of intestinal adenomas that spontaneously develop in these mice. In addition, CD45+F4/80+ leukocytes were detected in the vessel lumens indicating that these are functional tumor lymphatic vessels. Finally, to determine if LEC progenitors contribute to lymphatic vessels in the absence of radiation injury or tumorigenesis, a parabiosis model was evaluated. Donor-derived LEC were detected in parabiotic mice at a frequency similar to that observed for donor-derived blood vascular endothelial cells. This finding suggests that circulating progenitor cells contribute to lymphangiogenesis during steady-state conditions. Our results indicate that hematopoietic stem cells have the potential to contribute to lymphatic endothelium and therefore HSC-derived progenitors may be potential therapeutic targets for hematopoietic and lymphatic disease.

Related Organizations
Keywords

Science, Macrophages, Q, R, Hematopoietic Stem Cells, Mice, Intestinal Neoplasms, Medicine, Animals, Myeloid Cells, Endothelium, Lymphatic, Biomarkers, Research Article, Granulocytes, Stem Cell Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
Green
gold