Powered by OpenAIRE graph
Found an issue? Give us feedback
Bloodarrow_drop_down
Blood
Article . 2003 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lack of the CD8+ cell anti-HIV factor in CD8+ cell granules

Authors: Sunil S. Metkar; Matthew Richey; Carl E. Mackewicz; Jay A. Levy; Baikun Wang; Christopher J. Froelich;

Lack of the CD8+ cell anti-HIV factor in CD8+ cell granules

Abstract

AbstractIn HIV infection, CD8+ cells show cytotoxic and noncytotoxic anti-HIV activity. The latter function is mediated, at least in part, by a secreted antiviral protein, the CD8+ cell antiviral factor (CAF). Because antiviral effector molecules, such as perforin and granzymes, reside in the exocytic granules of CD8+ T cells, we examined the possibility that granules contain CAF-like activity. CD8+ cells from HIV-infected individuals showing strong CAF-mediated antiviral activity were induced to release their granule constituents into culture media. Within 1 hour of stimulation, high levels of granzyme B (a primary granule constituent) were found in the culture fluids of previously activated CD8+ cells. The same culture fluids contained no or very low amounts of CAF activity, as measured with HIV-infected CD4+ cells. Maximal levels of CAF activity were not observed until 5 or 7 days after stimulation, consistent with typical CAF production kinetics. In addition, extracts of granules purified from antiviral CD8+ cells did not show any CAF activity, whereas the cytoplasmic fraction of these cells showed substantial levels of antiviral activity. These findings suggest that CAF does not reside at appreciable levels in the exocytic granules of antiviral CD8+ T cells. (Blood. 2003;102: 180-183)

Keywords

Male, Cytoplasm, Secretory Vesicles, Serine Endopeptidases, Cell Culture Techniques, HIV Infections, CD8-Positive T-Lymphocytes, Virus Replication, Exocytosis, Granzymes, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?