Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mineralogical Magazi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mineralogical Magazine
Article . 2018 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A structure hierarchy for silicate minerals: sheet silicates

Authors: Elena Sokolova; Frank C. Hawthorne; Yulia Uvarova;

A structure hierarchy for silicate minerals: sheet silicates

Abstract

AbstractThe structure hierarchy hypothesis states thatstructures may be ordered hierarchically according to the polymerisation of coordination polyhedra of higher bond-valence. A hierarchical structural classification is developed for sheet-silicate minerals based on the connectedness of the two-dimensional polymerisations of (TO4) tetrahedra, where T = Si4+plus As5+, Al3+, Fe3+, B3+, Be2+, Zn2+and Mg2+. Two-dimensional nets and oikodoméic operations are used to generate the silicate (sensu lato) structural units of single-layer, double-layer and higher-layer sheet-silicate minerals, and the interstitial complexes (cation identity, coordination number and ligancy, and the types and amounts of interstitial (H2O) groups) are recorded. Key aspects of the silicate structural unit include: (1) the type of plane net on which the sheet (or parent sheet) is based; (2) the u (up) and d (down) directions of the constituent tetrahedra relative to the plane of the sheet; (3) the planar or folded nature of the sheet; (4) the layer multiplicity of the sheet (single, double or higher); and (5) the details of the oikodoméic operations for multiple-layer sheets. Simple 3-connected plane nets (such as 63, 4.82and 4.6.12) have the stoichiometry (T2O5)n(Si:O = 1:2.5) and are the basis of most of the common rock-forming sheet-silicate minerals as well as many less-common species. Oikodoméic operations, e.g. insertion of 2- or 4-connected vertices into 3-connected plane nets, formation of double-layer sheet-structures by (topological) reflection or rotation operations, affect the connectedness of the resulting sheets and lead to both positive and negative deviations from Si:O = 1:2.5 stoichiometry. Following description of the structural units in all sheet-silicate minerals, the minerals are arranged into decreasing Si:O ratio from 3.0 to 2.0, an arrangement that reflects their increasing structural connectivity. Considering the silicate component of minerals, the range of composition of the sheet silicates completely overlaps the compositional ranges of framework silicates and most of the chain-ribbon-tube silicates.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
bronze