Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neurofuzzy control of weld penetration in gas tungsten arc welding

Authors: J. Gao; Chuansong Wu;

Neurofuzzy control of weld penetration in gas tungsten arc welding

Abstract

AbstractIn the present paper, a method using the surface geometrical parameters of the weld pool to control the weld penetration is developed. Because detection of the weld penetration is problematic and the back side maximum weld width can reflect weld penetration to some extent, a model describing the relationship between the weld pool surface geometrical parameters and the back side maximum weld width is constructed. Considering that the tungsten inert gas welding process exhibits long time lag and non-linear time dependence, a one layer neurofuzzy controller is designed and a learning algorithm is also developed. The controller can learn fuzzy rules and adjust the fuzzy rules automatically with variations of the environment. Based on the model and the controller, a control simulation and a control test for back side maximum weld width are conducted. The results show that the back side maximum weld width is well controlled.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?