Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Histochem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Monoclonal antibodies against rat saliva and salivary gland antigens.

Authors: H. van der Noen; Edward W. Gresik; Tibor Barka;

Monoclonal antibodies against rat saliva and salivary gland antigens.

Abstract

Hybridomas were produced by the fusion of NS1 myeloma cells with spleen cells of a BALB/c mouse immunized with rat submandibular saliva. Growth of hybridomas was evident in 60/96 wells, and colonies secreting antibodies against saliva components were identified in 20 wells by using a solid phase enzyme-linked immunoassay. Cloning of cells from 12 wells yielded originally 43 hybridoma cell lines secreting anti-saliva antibodies. After recloning, one hybridoma (4Cl3) was selected for further studies. The hybridoma (4Cl3) cells were grown as ascites tumors, and the antibodies were purified from the ascitic fluid by diethylaminoethyl Affi-gel Blue chromatography. The purified antibody (MA4), immunoglobulin G1, immunoprecipitated a 39K dalton protein from submandibular saliva, and also reacted with a protein of the same electrophoretic mobility on immunoblots. From extracts of submandibular gland slices, incubated with [3H]leucine, the antibody again immunoprecipitated a 39K protein, indicating that this protein is synthesized in the gland. MA4 was used for immunocytochemical stainings of submandibular glands of rats of different ages. In general, immunostaining was seen only in acinar cells. Thus, there was no staining in the glands of 1-day-old rats that lack differentiated acinar cells. In the glands of 1- to 4-week-old rats the number of immunoreactive cells and the extent of immunostaining paralleled the differentiation of the acinar cells. In the glands of adult rats a uniform staining of the secretory granules of the acinar cells was observed. The immunoreactive 39K protein seemed to be restricted to the acinar cells in the submandibular gland; there was no immunostaining in the parotid, sublingual, or lingual salivary glands, or in the pancreas, colon, and duodenum. Stimulation of saliva secretion by isoproterenol resulted in a virtual depletion of the antigen from the acinar cells. These results indicate the feasibility of producing mouse hybridomas that secrete antibodies against rat saliva components. The monoclonal antibody at hand will be useful in analyzing the differentiation of the acinar cells, and the factors that influence this differentiation process.

Keywords

Aging, Staining and Labeling, Histocytochemistry, Immunochemistry, Submandibular Gland, Antibodies, Monoclonal, Collodion, Cell Differentiation, Rats, Inbred Strains, Chromatography, Affinity, Salivary Glands, Rats, Immunoenzyme Techniques, Leucine, Animals, Chemical Precipitation, Electrophoresis, Polyacrylamide Gel, Female, Saliva

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze