Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Diabetes ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Evaluations of Continuous Glucose Monitoring Systems: Precision Absolute Relative Deviation is Part of the Assessment

Authors: Michael Schoemaker; Heino Eikmeier; Karin Obermaier; Harald Kirchsteiger; Hans-Martin Klötzer; Günther Schmelzeisen-Redeker; Luigi del Re;

Performance Evaluations of Continuous Glucose Monitoring Systems: Precision Absolute Relative Deviation is Part of the Assessment

Abstract

Background: Even though a Clinical and Laboratory Standards Institute proposal exists on the design of studies and performance criteria for continuous glucose monitoring (CGM) systems, it has not yet led to a consistent evaluation of different systems, as no consensus has been reached on the reference method to evaluate them or on acceptance levels. As a consequence, performance assessment of CGM systems tends to be inconclusive, and a comparison of the outcome of different studies is difficult. Materials and Methods: Published information and available data (as presented in this issue of Journal of Diabetes Science and Technology by Freckmann and coauthors) are used to assess the suitability of several frequently used methods [International Organization for Standardization, continuous glucose error grid analysis, mean absolute relative deviation (MARD), precision absolute relative deviation (PARD)] when assessing performance of CGM systems in terms of accuracy and precision. Results: The combined use of MARD and PARD seems to allow for better characterization of sensor performance. The use of different quantities for calibration and evaluation, e.g., capillary blood using a blood glucose (BG) meter versus venous blood using a laboratory measurement, introduces an additional error source. Using BG values measured in more or less large intervals as the only reference leads to a significant loss of information in comparison with the continuous sensor signal and possibly to an erroneous estimation of sensor performance during swings. Both can be improved using data from two identical CGM sensors worn by the same patient in parallel. Conclusions: Evaluation of CGM performance studies should follow an identical study design, including sufficient swings in glycemia. At least a part of the study participants should wear two identical CGM sensors in parallel. All data available should be used for evaluation, both by MARD and PARD, a good PARD value being a precondition to trust a good MARD value. Results should be analyzed and presented separately for clinically different categories, e.g., hypoglycemia, exercise, or night and day.

Related Organizations
Keywords

Blood Glucose, Time Factors, Blood Glucose Self-Monitoring, Reproducibility of Results, Biosensing Techniques, Sensitivity and Specificity, Evaluation Studies as Topic, Data Interpretation, Statistical, Calibration, Diabetes Mellitus, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
bronze