
In the analysis and design of functional clothing systems, it is helpful to quantify the effects of a system on a wearer's physical performance capabilities. Toward this end, a clothing modeling framework for quantifying the mechanical interactions between a given clothing system design and a specific wearer performing defined physical tasks is proposed. The modeling framework consists of three interacting modules: (1) a macroscale fabric mechanics/dynamics model; (2) a collision detection and contact correction module; and (3) a human motion module. In the proposed framework, the macroscopic fabric model is based on a rigorous large deformation continuum-degenerated shell theory representation. Material models that capture the stress-strain behavior of different clothing fabrics are used in the continuum shell framework. The collision and contact module enforces the impenetrability constraint between the fabric and human body and computes the associated contact forces between the two. The human body is represented in the current framework as an assemblage of overlapping ellipsoids that undergo rigid body motions consistent with human motions while performing actions such as walking, running, or jumping. The transient rigid body motions of each ellipsoidal body segment in time are determined using motion capture technology. The integrated modeling framework is then exercised to quantify the resistance that the clothing exerts on the wearer during the specific activities under consideration. Current results from the framework are presented and its intended applications are discussed along with some of the key challenges remaining in clothing system modeling.
Chemical technology, TP890-933, TA401-492, TP1-1185, Textile bleaching, dyeing, printing, etc., Materials of engineering and construction. Mechanics of materials
Chemical technology, TP890-933, TA401-492, TP1-1185, Textile bleaching, dyeing, printing, etc., Materials of engineering and construction. Mechanics of materials
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
