
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AutoAnalyze is a highly customizable framework for the visualization and analysis of large-scale model graphs. Originally developed for use in the automotive domain, it also supports efficient computation within molecular networks represented by reaction equations. A static analysis approach is used for efficient treatment-condition-specific simulation. The chosen method relies on the computation of a global network data-flow resulting from the evaluation of individual genetic data. The approach facilitates complex analyses of biological components from a molecular network under specific therapeutic perturbations, as demonstrated in a case study. In addition to simulating the complex networks in a stable and reproducible way, kinetic constants can also be fine-tuned using a genetic algorithm and built-in statistical tools.
ddc:500, QH301-705.5, Technical Advances, Biology (General)
ddc:500, QH301-705.5, Technical Advances, Biology (General)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
