
pmid: 16840705
Synapses are packed with mitochondria, complex organelles with roles in energy metabolism, cell signaling, and calcium homeostasis. However, the precise mechanisms by which mitochondria influence neurotrans mission remain undefined. In this review, the authors discuss pharmacological and genetic analyses of synaptic mitochondrial function, focusing on their role in Ca2+ buffering and ATP production. Additionally, they will summarize recent data that implicate synaptic mitochondria in the regulation of neurotransmitter release during intense neuronal activity and link these findings to the pathogenesis of neurodegenerative diseases that feature disrupted synaptic mitochondria, including amyotrophic lateral sclerosis and hereditary spastic paraplegia.
Neurons, Neurotransmitter Agents, Adenosine Triphosphate, Synapses, Animals, Humans, Calcium, Neurodegenerative Diseases, Synaptic Transmission, Mitochondria
Neurons, Neurotransmitter Agents, Adenosine Triphosphate, Synapses, Animals, Humans, Calcium, Neurodegenerative Diseases, Synaptic Transmission, Mitochondria
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 201 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
