Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Neuroscientistarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nitric Oxide and Memory

Authors: Nimrod Miller; Ayelet Katzoff; Itay Hurwitz; Abraham J. Susswein;

Nitric Oxide and Memory

Abstract

Nitric oxide (NO) is widely used in neural circuits giving rise to learning and memory. NO is an unusual neurotransmitter in its modes of release and action. Is its association with learning and memory related to its unusual properties? Reviewing the literature might allow the formulation of a general principle on how NO and memory are related. However, other than confirming that there is indeed a strong association between NO and memory, no simple rules emerge on the role of NO in learning and memory. The effects of NO are not associated with a particular stage or form of memory and are highly dependent on species, strain, and behavior or training paradigm. Nonetheless, a review does provide hints on why NO is associated with learning and memory. Unlike transmitters acting via receptors expressed only in neurons designed to respond to the transmitter, NO is a promiscuous signal that can affect a wide variety of neurons, via many molecular mechanisms. In circuits giving rise to learning and memory, it may be useful to signal some events via a promiscuous messenger having widespread effects. However, each circuit will use the promiscuous signal in a different way, to achieve different ends.

Related Organizations
Keywords

Neuronal Plasticity, Behavior, Animal, Memory, Models, Neurological, Animals, Nerve Net, Nitric Oxide, Synaptic Transmission

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    150
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
150
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?