Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Prosthetics and Orth...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Prosthetics and Orthotics International
Article . 2018 . Peer-reviewed
License: SAGE TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A systematic review of shock-attenuating componentry for lower limb amputees

Authors: Farrar, Mitchell; Thomas, Emma;

A systematic review of shock-attenuating componentry for lower limb amputees

Abstract

Shock-attenuating pylons are commonly fitted to prostheses in order to compensate for the anatomical and biomechanical shock-absorbing features of the lower limb removed upon amputation. However, studies concerning their shock-attenuating capacity are highly variable and, to date, have not yet been reviewed, making them difficult to interpret and apply in clinical practice.To synthesise and appraise the available literature examining the effectiveness of shock-attenuating pylons in attenuating shock upon limb loading compared to rigid pylons among lower limb amputees.Systematic review.A comprehensive search of seven databases was conducted using search terms concerning amputation level, shock-attenuating and rigid pylons as well as measures of shock attenuation. All studies yielded were screened against established inclusion and exclusion criteria before eligible articles were appraised using the Quality Assessment Standard for Crossover Studies adapted from the Cochrane handbook.Nine articles were eligible for inclusion. While there was a trend among studies to indicate only a limited positive effect of shock-attenuating pylons in attenuating transient impact forces, limitations to the study designs, namely, in sampling, poor reporting of methodological details and heterogeneity of outcomes made conclusive interpretation of results difficult.While the current body of literature does not reconcile with claims made by manufacturers of shock-attenuating pylons, it is insufficient to conclusively determine how effective shock-attenuating pylons are, in comparison with conventional rigid pylons, in attenuating transient impact forces among lower limb amputees. Higher quality research is required to better guide decisions regarding prescription of shock-attenuating componentry in clinical practice. Clinical relevance When delivered well, research can provide clinicians with objective and reliable data that can be applied in their practice to guide prescription of componentry. However, methodological limitations to research may compromise the reliability of findings, thereby producing potentially misleading outcomes. These limitations must be recognised and appreciated such that findings may be interpreted accurately and applied appropriately.

Country
Australia
Keywords

Male, Tibia, Amputation Stumps, Artificial Limbs, shock-absorber, Biomechanical Phenomena, 2742 Rehabilitation, biomechanics of prosthetic/orthotic devices, Prosthetic design, 3601 Health Professions (miscellaneous), Amputees, Energy Transfer, 306, Prosthesis Fitting, Quality of Life, Humans, Female, Stress, Mechanical, impact transient, Gait, shock-pylon

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!